Horizon 2020 (2014 - 2020)

Patterned microfluidic sheets for studies of root exudation profiles: RhizoSheet

Last update: Aug 3, 2021 Last update: Aug 3, 2021

Details

Locations:Spain
Start Date:Oct 1, 2021
End Date:Sep 30, 2023
Contract value: EUR 160,932
Sectors:Agriculture
Agriculture
Categories:Grants
Date posted:Aug 3, 2021

Associated funding

Associated experts

Description

Programme(s): H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Topic(s): MSCA-IF-2020 - Individual Fellowships
Call for proposal: H2020-MSCA-IF-2020
Funding Scheme: MSCA-IF-EF-ST - Standard EF

Grant agreement ID: 101028242

Objective
Modern plant varieties have been bred to grow and increase production under non limiting soil conditions and have consequently lost their ability to capture resources efficiently. Designing an efficient fertiliser requires optimising bioavailability and mobility of nutrients. Unfortunately, bio-availability and mobility are often antagonistic.

Traditional fertilisers, which package soluble mineral elements into granules, are easily acquired by plant roots but have been linked to excessive loss to the environment and pollution. Slow release fertilisation has been proposed to slow down the diffusion of nutrients to the soil, including the use of nanotechnology, but slowing down the diffusion of nutrients excessively affects root uptake. Biological fertilisation is inspired from known mechanisms observed in soil, but maintaining efficient colonisation of the root by beneficial microbes is challenging.

New approaches must be developed to better control the associations taking place between plants and beneficial microbes, since fundamental knowledge to achieve this target is nowadays lacking. Roots exude a huge diversity of biomolecules, and their role in maintaining adequate beneficial microbes are mostly unknown and rarely studied.

The aim of the RhizoSheet project is to apply cutting-edge microfluidic techniques based on hybrid paper-polymer technology for device fabrication. Optical sensors and novel functional materials will be applied as biochemical sensors to gain knowledge on the location of compounds secreted by roots and on the response of roots over time, when interacting with soil microbes.

The acquired knowledge will be highly beneficial for the scientific and agricultural community and finds the interest of the EU in soil and food safety, the RhizoSheet project meets the interest of the Horizon Europe - the next research and innovation framework programme in particular the natural resources in Pillar 1.

Want to unlock full information?
Member-only information. Become a member to access projects awards, find the right consortia partners, subcontractors and more.